Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xuanhua Chen, ${ }^{\text {a }}$ Rongwei Guo $^{\text {a,b }}$ * and Zhongyuan Zhou ${ }^{\text {b,c }}$

${ }^{\text {a }}$ Department of Chemistry, Central China Normal University, Wuhan, Hubei, People's Republic of China, ${ }^{\text {b }}$ Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China, and ${ }^{\text {c }}$ Chengdu Institute of Organic Chemistry, Chinese Academy of Science,
Chengdu, People's Republic of China
Correspondence e-mail:
98900496r@polyu.edu.hk

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.054$
$w R$ factor $=0.082$
Data-to-parameter ratio $=19.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

N-[3-Acetamido-1,3-bis(4-ethylphenyl)butenyl]acetamide

Both intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are found in the structure of the title compound, $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$. Molecules are assembled into chains, along the b axis, via intermolecular interactions.

Comment

The title compound, N-[3-acetamido-1,3-bis(4-ethylphenyl)butenyl]acetamide, (I), is one of the by-products obtained during the synthesis of N-[1-(4-ethylphenyl)ethenyl]acetamide (Burk et al., 1998). In this study, the structure determination of (I) was conducted in order to obtain more knowledge about enamide compounds.

(I)

In the crystal structure (Fig. 1), the $\mathrm{C} 13-\mathrm{C} 14$ bond distance of 1.336 (3) \AA is indicative of double-bond character. The $\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 17-\mathrm{C} 22, \mathrm{C} 15-\mathrm{N} 2-\mathrm{C} 14-\mathrm{C} 17$ and $\mathrm{C} 15-\mathrm{N} 2-$ $\mathrm{C} 14-\mathrm{C} 13$ torsion angles are 23.8 (4), 63.2 (3) and -124.7 (3) ${ }^{\circ}$, suggesting little conjugation in this residue, although the C3$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 17$ torsion angle is $177.0(2)^{\circ}$. Atom $\mathrm{H} 2 A$ of amine-N2 forms an intramolecular hydrogen bond with O1 (Table 1). Atom $\mathrm{H} 1 A$ of amine-N1 forms an intermolecular hydrogen bond with $\mathrm{O} 2 A$ of another molecule (x, $1 / 2-y, z-1 / 2)$. As illustrated in Fig. 2, these interactions link the molecules in chains along the b axis.

Experimental

The title compound was synthesized according to the literature method of Burk et al. (1998). A crystal suitable for X-ray analysis was slowly grown from a mixed solvent (ethyl acetate/hexane $=1: 5$) at room temperature. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, Varian): δ 1.18-1.22 $(m, 6 \mathrm{H}), 1.35(s, 3 \mathrm{H}), 1.63(s, 3 \mathrm{H}), 2.09(s, 3 \mathrm{H}), 2.59-2.63(m, 4 \mathrm{H}), 5.37$ $(s, 1 \mathrm{H}), 6.02(s, 1 \mathrm{H}), 7.12-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.35(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.97$ ($s, 1 \mathrm{H}$).

Received 7 May 2002
Accepted 13 May 2002
Online 24 May 2002

The molecular structure of (I), showing displacement ellipsoids at the 30% probability level (Siemens, 1995).

Crystal data
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=378.50$
Monoclinic, $P 2_{1} / c$
$a=20.773(4) \AA$
$b=6.5109(10) \AA$
$c=17.063(3) \AA$
$\beta=101.918(4)^{\circ}$
$V=2258.0(6) \AA^{3}$
$Z=4$
$D_{x}=1.113 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=378.50$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=20.773$ (4) A
$c=17.063$ (3) A
$\beta=101.918$ (4) ${ }^{\circ}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 1867 reflections
$\theta=1-27.5^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Prism, colorless
$0.28 \times 0.23 \times 0.20 \mathrm{~mm}$

Data collection

Bruker CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.981, T_{\text {max }}=0.986$
11299 measured reflections

Refinement

Refinement on $F^{2} \quad \mathrm{H}$-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.005 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}$
$w R\left(F^{2}\right)=0.082$
$S=0.91$
5141 reflections
258 parameters

Figure 2
Packing diagram for (I). Hydrogen bonds are indicated by dashed lines.

H atoms were included in the riding-model approximation, with $U_{\text {iso }}$ equal to $U_{\text {eq }}$ of the atom to which they were bound.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SHELXTL-NT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $S H E L X T L-N T$; software used to prepare material for publication: $S H E L X T L-N T$.

We thank the Hong Kong Polytechnic University ASD Fund for financial support of this study.

References

Burk, M. J., Casy, G. \& Johnson, N. B. (1998). J. Org. Chem. 63, 6084-6085. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXTL. University of Göttingen, Germany. Siemens (1995). SMART (Version 5.0) and SHELXTL-NT (Version 5.10).

Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

